Las redes generativas antagónicas, capaces de crear imágenes y vídeos falsos ultrarrealistas conocidos como ‘deepfakes’ tienen múltiples aplicaciones buenas, y también muchas malas, que amenazan nuestra forma de entender la realidad, algo para lo que no estamos preparados
Recientemente hemos establecido los conceptos básicos de la inteligencia artificial (IA). Aquí va un pequeño resumen:
La mayoría de avances y aplicaciones de la IA se basan en un tipo de algoritmo conocido como aprendizaje automático que busca patrones y los aplica en los datos.
El aprendizaje profundo, un poderoso tipo de aprendizaje automático, utiliza redes neuronales para encontrar y amplificar incluso los patrones más pequeños.
Las redes neuronales son capas de nodos computacionales simples que colaboran para analizar datos, como neuronas del cerebro humano.
Ahora llegamos a la parte divertida. Usar una red neuronal resulta genial para descubrir patrones. Usar dos de ellas fantástico para crearlos. Bienvenidos al mundo mágico y aterrador mundo de las redes generativas antagónicas, o GAN.
Su secreto está en la forma en la que dos redes neuronales trabajan juntas, o mejor dicho, una contra la otra. Primero hay que alimentar ambas redes neuronales con una gran cantidad de datos de entrenamiento, aunque a cada una se le asigna una tarea distinta. La primera red, conocida como generadora, debe producir muestras artificiales, como la escritura a mano, vídeos o voces, a partir de su análisis de los ejemplos de entrenamiento para intentar imitarlos. La segunda, conocida como discriminadora, determina si las muestras son reales comparándolas con los mismos ejemplos de entrenamiento.
Cada vez que la discriminadora rechaza una creación de la red generadora, esta vuelve a intentarlo de nuevo. Como lo expresó mi colega Martin Giles, el proceso “imita el ir y venir entre un falsificador de obras de arte y un detective que intentan repetidamente burlarse uno del otro”. Al final, la red discriminadora es incapaz de distinguir entre las muestras de la generadora y los ejemplos de entrenamiento. En otras palabras, la imitación es indistinguible de la realidad.
Es fácil intuir por qué el mundo de las GAN es igualmente considerado bello y horrible al mismo tiempo.
Por un lado, la capacidad de sintetizar medios e imitar otros patrones
de datos puede ser útil en la edición de fotos, en la animación y en la medicina
(pueden mejorar la calidad de las imágenes médicas y superar la escasez
de datos sobre el paciente). También produce creaciones divertidas como
esta:
Afortunadamente, las GAN todavía tienen limitaciones que nos protegen
parcialmente de ellas. Necesitan muchísima potencia informática y
conjuntos de datos muy concretos para producir algo realmente creíble.
Para crear una imagen realista de una rana, por ejemplo, una GAN
necesita cientos de imágenes de ranas de una especie en particular,
preferiblemente con la mirada puesta en una dirección similar. Sin estas
características, los resultados son realmente extraños, como esta criatura de pesadillas:
(Denme las gracias por no poner los ejemplos de arañas).
Pero a los expertos les preocupa que solo estemos viendo la punta del iceberg. A medida que los algoritmos se vuelven más refinados, los vídeos con errores y los animales picassianos se convertirán en algo del pasado. Como me dijo el experto en imágenes forenses digitales Hany Farid, no estamos preparados para resolver este problema.
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
Cookie
Duración
Descripción
cookielawinfo-checkbox-analytics
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional
11 months
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy
11 months
The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Las redes generativas antagónicas, capaces de crear imágenes y vídeos falsos ultrarrealistas conocidos como ‘deepfakes’ tienen múltiples aplicaciones buenas, y también muchas malas, que amenazan nuestra forma de entender la realidad, algo para lo que no estamos preparados
Recientemente hemos establecido los conceptos básicos de la inteligencia artificial (IA). Aquí va un pequeño resumen:
Ahora llegamos a la parte divertida. Usar una red neuronal resulta genial para descubrir patrones. Usar dos de ellas fantástico para crearlos. Bienvenidos al mundo mágico y aterrador mundo de las redes generativas antagónicas, o GAN.
Las GAN están generando un momento de importancia cultural. Son responsables de la primera obra de arte creada por IA y vendida en la casa de subastas Christie’s, y también son autoras de las imágenes digitales falsas ultrarrealistas conocida como “deepfakes“.
Su secreto está en la forma en la que dos redes neuronales trabajan juntas, o mejor dicho, una contra la otra. Primero hay que alimentar ambas redes neuronales con una gran cantidad de datos de entrenamiento, aunque a cada una se le asigna una tarea distinta. La primera red, conocida como generadora, debe producir muestras artificiales, como la escritura a mano, vídeos o voces, a partir de su análisis de los ejemplos de entrenamiento para intentar imitarlos. La segunda, conocida como discriminadora, determina si las muestras son reales comparándolas con los mismos ejemplos de entrenamiento.
Cada vez que la discriminadora rechaza una creación de la red generadora, esta vuelve a intentarlo de nuevo. Como lo expresó mi colega Martin Giles, el proceso “imita el ir y venir entre un falsificador de obras de arte y un detective que intentan repetidamente burlarse uno del otro”. Al final, la red discriminadora es incapaz de distinguir entre las muestras de la generadora y los ejemplos de entrenamiento. En otras palabras, la imitación es indistinguible de la realidad.
Es fácil intuir por qué el mundo de las GAN es igualmente considerado bello y horrible al mismo tiempo. Por un lado, la capacidad de sintetizar medios e imitar otros patrones de datos puede ser útil en la edición de fotos, en la animación y en la medicina (pueden mejorar la calidad de las imágenes médicas y superar la escasez de datos sobre el paciente). También produce creaciones divertidas como esta:
Y este:
Pero las GAN también se pueden usar de maneras éticamente cuestionables y peligrosas: superponer las caras de las celebridades en los cuerpos de las estrellas pornográficas, hacer que Barack Obama diga lo que queramos, o falsificar las huellas dactilares y otros datos biométricos, una capacidad que los investigadores en la Universidad de Nueva York y del Estado de Michigan (ambos en EE.UU.) demostraron recientemente en una investigación.
Afortunadamente, las GAN todavía tienen limitaciones que nos protegen parcialmente de ellas. Necesitan muchísima potencia informática y conjuntos de datos muy concretos para producir algo realmente creíble. Para crear una imagen realista de una rana, por ejemplo, una GAN necesita cientos de imágenes de ranas de una especie en particular, preferiblemente con la mirada puesta en una dirección similar. Sin estas características, los resultados son realmente extraños, como esta criatura de pesadillas:
(Denme las gracias por no poner los ejemplos de arañas).
Pero a los expertos les preocupa que solo estemos viendo la punta del iceberg. A medida que los algoritmos se vuelven más refinados, los vídeos con errores y los animales picassianos se convertirán en algo del pasado. Como me dijo el experto en imágenes forenses digitales Hany Farid, no estamos preparados para resolver este problema.
Fuente
Compartir esto: